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SUMMARY 
 
 First the operating principle of torsion balance is outlined, then a short history of 
measurements in Hungary is discussed. Finally some practical geodetic applications are 
presented. 
 
 

INTRODUCTION 
 
 Sooner or later very precise and simple gradiometers will be available for 
geoscientists. By constructing suitable instruments, gravity gradients will be measurable 
with high accuracy simply and quickly. In this regard it may be important to investigate 
the geodetic applications of earlier torsion balance measurements. 
 Knowledge of gravity gradients is very important for geodesy. Gravity gradients 
are the elements of gravity gradient tensor (Eötvös tensor): 
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E  is a symmetrical tensor, because  yxxy WW = ,  zxxz WW = ,  zyyz WW = .  The third line 
of tensor  E  represents the gravity gradients:  zxW   and  zyW   are the two components of 
the horizontal gradient and  zzW  is the vertical gradient. Horizontal gradients of gravity  

zsW   can be illustrated as vectors having the length of 22
zyzxzs WWW +=   and azimuth  

)/arctan( zxzy WW=α  (VÖLGYESI, 1999). Furthermore  E  contains the   xxyy WWW −=∆   
and  xyW  curvature data - using the terms of Eötvös (SELÉNYI, 1953). Curvature of level 

surfaces can be illustrated as line segments having the length of  22 4 xyWWR += ∆  and 

the azimuth of maximal curvature  )/2arctan(2/1 ∆−= WW xyα  (EGYED, 1955). It is 
important to know that ∆W  and xyW2  characterize the curvature of potential surfaces 
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(how the shape of potential surfaces differ from the shape of a sphere), and zxW  , zyW  
characterize how potential surfaces are not parallel to each other. 
 Torsion balance can measure the components of horizontal gradient  zxW  , zyW   
and the curvature data  ∆W  , xyW2   - but unfortunately it can’t measure the vertical 
gradient  zzW  . 
 
 

1. PRINCIPLE OF TORSION BALANCE 
 
 The Eötvös torsion balance consists of a horizontal beam having the length  2l  
with masses  m  on each ends suspended at a torsion wire. One of the two masses is on 
the one end of the horizontal beam, and the other mass is suspended at a distance  h  
from the other end of the beam - as it can be seen on  Fig. 1.  Horizontal component of 
gravity acting on the two masses causes a torque, and the horizontal beam is rotated 
until an equilibrium position with the restoring torque of the suspending torsion wire 
(having the torsion constant  τ ) is reached. In the equilibrium condition of torques the 
scale reading is  n , while the scale reading of the torsion-free zero position of the beam 
would be  0n . 
 

 
Fig. 1  Principle of torsion balance 

 
 
 The base equation of Eötvös torsion balance is: 
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where  K  is the moment of inertia, and  α  is the azimuth of the beam. The earlier type 
of instrument is the Cavendish torsion balance, in which the two masses are on the same 
height on the two ends of the beam. This type of instrument is unable to measure the 
components of horizontal gradient  zxW  and zyW  ,  because 0=h   in  Eq. (1).  
 Based on  Eq. (1) there are five unknowns  ),,2,,( 0 zyzxxy WWWWn ∆   at each 
measuring site, so the readings should be made in five different azimuths. Usually two 
beam systems are mounted in one instrument at antiparallel position to each other, so 
there is a new unknown torsion-free zero position  '

0n   for the new beam system. Due to 
the additional unknown, six measurements in three different azimuths (e.g. 00 , 0120 , 

0240 ) are sufficient, but it is necessary to repeat the measurements in order to increase 
the accuracy. 
 Different types of torsion balances were produced mainly by the Hungarian 
company Süss and ELGI, and Askania in Berlin. Before the year 1925 only the non series 
instruments were made, but after this time more than 300 torsion balance instruments 
were made in series in Hungary. The main parameters of the most important Hungarian 
torsion balance instruments were summarized in Tab. 1 (SZABÓ, 1999). 
 

Tab. 1   Main parameters of the most important type of instruments 
m - mass [g],  l - half of the length of the beam [cm],  h - distance between the beam and 
the suspended mass [cm],  L - length of the suspending torsion wire [cm],  d - diameter of 
the torsion wire [mm],  τ - torsion constant of torsion wire [cgs],  D - distance between 
the mirror and the scale [cm],  K - moment of inertia of the beam [cgs],  T - decay time 
[min]. 
 

Type year m  l  h L d τ D K T 
Auterbal 1925 15 7 22 20 0.017 0.03 32 1700 40 
Pekar 2b 1930 12 10 32 30 0.020 0.07 45 2450 45 

E-54 1954 9 10 30 20 0.019 0.06 31 1900 40 
E-60 1960 9 10 30 20 0.022 0.20 31 1900 20 

 
 The sensitivity of torsion balance can be increased by extending the oscillation 
time, which can be achieved by increasing  K  and decreasing  τ . Depending on the 
aperiodic air damping, a large oscillation time implies long time period for the system to 
come to the rest position where a reading is made (TORGE, 1989). The time required for 
the survey at one station was 3 - 8 hours, depending on the length of settling time  T . 
 
 

2. TORSION BALANCE MEASUREMENTS IN HUNGARY 
 
 The first measurements with torsion balance were made by Lorand Eötvös 
himself at the foot of Gellért Hill in Budapest in the year 1889, than at Sághegy near 
Celldömölk in 1891. The first measurements extending over a bigger area were made on 
winter time on the ice surface of the lake Balaton  in 1901 and 1903, and the first 
successful geophysical exploration was made at Morvamezö near Egbell in 1916. 
Between 1901 and 1967 more than  60000  torsion balance measurements were made in 
Hungary by the companies of  MAORT, ELGI and OKGT, but now approximately  
5000  points are found over the Hungarian border from this  60000  stations. Points 
mainly cover the Great Hungarian Plain, and the hilly Transdanubian area with 
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moderate topography, because due to the strong influence of topographic masses torsion 
balance measurements could only be performed in flat terrain or moderate hills. For the 
terrain reduction a leveling was performed at each point, to a range of 100 m around the 
station, and the topographic effects were computed for each point. 
 Based on the figures found in literature the accuracy of torsion balance 
measurements of gravity gradients and curvature parameters are approximately      ±1 
E    (1 E = 1 Eötvös Unit = 2910 −− s ). There is a good possibility to check this value. In 
1946 calibration measurements were completed at the point Üllö_1 ( 142247 ′′′= oϕ , 

240219 ′′′= oλ  in WGS-84 system) - near to Budapest - and the field books contain 
interesting and important data concerning to the accuracy of torsion balance 
measurements. At that time three instruments (No.36690, No.37265 and No.37286) were 
set up on the three points of a triangle (Üllö_1/a, Üllö_1/b and Üllö_1/c) at a distance of 
approximately 15 - 20 m to each other on a flat ground surface with small sand-dunes. 
The results of calibration measurements are summarized in  Tab. 2. 
 

Tab. 2   Calibration measurements of different instruments 
 

 Point Instrument 
No.36690 

Instrument 
No.37265

Instrument 
No.37286

mean 

Wzx Üllö_1/a 0.6 1.5 0.6 0.9   ±0.3 
 Üllö_1/b -4.5 -4.2 -2.6 -3.8   ±0.8 
 Üllö_1/c -2.4 -4.2 -2.6 -3.1   ±0.8 
 mean: -2.1    ±2.1 -2.3    ±2.7 -1.5    ±1.5 -2.0 ±2.1 / ±0.6 

Wzy Üllö_1/a 3.4 5.4 3.9 4.2   ±0.8 
 Üllö_1/b 3.1 2.2 2.7 2.7   ±0.4 
 Üllö_1/c -2.6 -1.3 -1.4 -1.8   ±0.6 
 mean: 1.3    ±2.8 2.1    ±2.7 1.7    ±2.3 1.7 ±2.6 / ±0.6 

W∆ Üllö_1/a -7.8 -7.8 -8.8 -8.1   ±0.5 
 Üllö_1/b -5.1 -6.7 -7.0 -6.3   ±0.8 
 Üllö_1/c -13.6 -17.1 -11.0 -13.9   ±2.5 
 mean: -8.8    ±3.5 -10.5    ±4.7 -8.9    ±1.7 -9.4 ±3.3 / ±1.3 

2Wxy Üllö_1/a 8.8 4.7 3.3 5.6   ±2.3 
 Üllö_1/b 6.0 8.8 1.9 5.6   ±2.8 
 Üllö_1/c 1.5 -1.1 3.9 1.4   ±2.0 
 mean: 5.4    ±3.0 4.1    ±4.1 3.0    ±0.8 4.2 ±2.6 / ±2.4 

 
 Some important conclusions may be drawn from these data - in a good 
accordance with other earlier observations in Hungary: 
 - Measuring by different instruments at the same point there are smaller 
standard deviations, but measuring by the same instrument at different neighboring 
points within a distance to each other not more than 15 - 20 m, there are bigger 
standard deviations. 
 - Standard deviations of curvature data  ∆W   and  xyW2   are approximately two 
times bigger than the standard deviations of gravity gradients zxW   and  zyW  , that is the 
gravity gradients can be measured with higher accuracy. In circumstances of fieldwork, 
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standard deviations of gravity gradients are not bigger than  ±1 - 2 E , while standard 
deviations of curvature data are maximum  ±2 - 4 E  in accordance with other 
observations. 
 - Accuracy of different instruments may be a little different.  
 - Gravity gradients and curvature data may change their values by some Eötvös 
Units within a flat ground surface area having the extension not bigger than 10 - 20 m, 
so the elements of Eötvös tensor may have changes with very high frequency and 
relatively small amplitudes in a completely flat area too. 
 Because of these facts mentioned above, mostly before the year 1960 torsion 
balance measurements were usually made simultaneously by two instruments at each 
station. 
 The majority of original field books of torsion balance measurements are stored 
at Lorand Eötvös Geophysical Institute. From the year 1995 data of these field books 
were started to be saved to computer files by the financial support of the Hungarian 
National Research Fund (OTKA). At present 14235 torsion balance measurements are 
available for further processing in computer database. These data mainly cover the 
Hungarian Plain, as it can be seen on  Fig. 2.  
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Fig. 2  Torsion balance measurements in Hungary 
 
 
 Since earlier torsion balance measurements were made mainly for purposes of 
geophysical prospecting, mostly the gravity gradients  zxW   and  zyW   have been 
processed. Up to now, the gravity curvature values  ∆W   and  xyW2   - essential in 
geodesy - have been left unprocessed. 
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3. GEODETIC APPLICATION 
 

 Loránd Eötvös was the first to point out that interpolation of deflection of the 
vertical is possible from torsion balance measurements (SELÉNYI 1953). The method of 
Eötvös was developed in a simplified form by Renner (RENNER 1957). Further 
investigations were made by Badekas and Mueller (BADEKAS - MUELLER 1967), as well 
as Heineke (HEINEKE 1978). 
 A simple equation can be written for components of deflection of the vertical      
ξ  , η   between two arbitrary points  i  and  k  as well as for gravity curvature values  

∆W   and  xyW2   measured by torsion balance: 
 

 
=−−+ ikiikiikkikk αηαξαηαξ cossincossin  (2) 

 ( ) ( )( ) ( ) ( )( )[ ]ikkxyxyixyxyikki
ik UWUWUWUW
g

s
αα 2cos22sin

4
−+−+−+− ∆∆∆∆  

 
 
where  iks   is the distance between points  i  and  k ,  g  is the average value of gravity 
between them,  ikα   is the azimuth between the two points, and 
 
 
 ϕ2cos26.10=∆U  
 0=xyU  
 
are normal values of gravity curvatures (VÖLGYESI, 1993). The mathematical basis of  
(2)  is a line integration of  ∆W   and  xyW2 .  Using (2) it is possible to interpolate 
deflections of the vertical for a whole measurement network if some points have known 
deflection values.  
 A software was developed for computations which can be used to determine 
deflections of the vertical by any method of interpolation either along chains or in 
networks covering arbitrary area (VÖLGYESI, 1995). Test computations were performed 
in an area extending over some  1200 2km  (an ellipse shows the position of this test area 
on Fig. 2) and well measured by torsion balance, where both topographic conditions and 
the density of torsion balance measurements and astrogeodetic stations reflects average 
conditions in Hungary; and there was a possibility to check calculations because 
astrogeodetic and astrogravimetric data were available. In  Figs. 3  and 4  gravity 
gradients  ∆W   and  xyW2   measured by torsion balance are visualized on the test area. 
The interpolation network has 203 points with unknown deflections of the vertical and 
geoid undulations, and there are 6 points where absolute ξ  , η   and  N  values are 
known on this area of investigation, referring to the GRS80 system. (3 points were used 
for interpolations, and 3 points for checking of computations.) 
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Fig. 3   gravity gradients ∆W  on the test area 

 
 

Fig. 4   gravity gradients xyW2  on the test area 
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 Interpolated  ξ   and  η   components of deflections of the vertical that resulted 
from the computation visualized on isoline maps in  Figs. 5  and 6. Standard deviations  

06.0 ′′±=ξm   and  56.0 ′′±=ηm , computed at checkpoints confirm the fact that even for 
large continuous territories  ξ  , η   values of acceptable accuracy can be computed from 
torsion balance measurements (VÖLGYESI, 1995, 1998). 
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Fig. 5   Interpolated ξ  components of deflections of the vertical 
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Fig. 6   Interpolated η  components of deflections of the vertical 
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 The other possible application of torsion balance measurements is the 
determination of "fine structure" of local geoid forms. It is possible to compute geoid 
heights on the torsion balance stations directly, using a new practical solution of 
astronomical leveling:  
 

 ikik
ki

ik
ki

ik sNN 



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

 +
+

+
=− α

ηη
α

ξξ
sin

2
cos

2
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where  iks   is the distance between points  i  and  k  and  ikα   is the azimuth between the 
two points (VÖLGYESI, 2001). Based on the previously interpolated deflection of the 
vertical components, geoid computations were carried out. The computed geoid map can 
be seen on  Fig. 7.  Standard deviation of geoid height differences at checkpoints, 
computed directly over the arbitrary-shaped network of torsion balance stations is  
±0.04m (VÖLGYESI, 2001). This value of standard deviations of computed geoid heights 
confirm the fact that torsion balance measurements can be used very effectively for 
determination of fine structure of local geoid forms. 
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Fig. 7  The computed geoid map 
 
 
 Another possible application of torsion balance measurements is the prediction of 
gravity anomalies by least squares collocation (TÓTH, 2000). Knowledge of gravity 
anomalies is very important for numerous geodetic applications - mainly for geoid 
determination. Results of the test computations demonstrated that torsion balance 
measurements can advantageously applied for gravity field determination in Hungary. 
Accuracy of predicted gravity anomalies is  ±1 mGal   (TÓTH, 2000). 
 A new fine possibility comes from the theoretical results of van Gelderen and 
Rummel (VAN GELDEREN, RUMMEL 2000). They give a theoretical solution of surface 
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integrals of certain combinations of elements of Eötvös tensor, giving a possibility of 
application of combinations of horizontal gradient  zxW  , zyW   and the curvature data  

∆W  , xyW2   for the solution of geodetic boundary values problem. In the near future we 
plan to try a practical application of this new method. 
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