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Abstract. In majority of real adjustment problems, 
the observation equations to be solved in least 
square sense, have more hundreds or thousands 
variables, the matrix of the system is sparse and 
often ill-conditioned. In this case study, the 
application of integrated, symbolic-numeric system, 
Mathematica to solve a practical adjustment prob-
lem for deflection of the vertical determination is 
demonstrated. Solving a real world adjustment 
problem, represented by more thousands variables 
and equations, with very high sparseness of the 
system matrix, we illustrate, how easy for 
practitioners to create and handle sparse matrices 
economically, compute condition numbers, 
pseudoinverse and carry out singular value 
decomposition and solve least square problems with 
Mathematica within seconds. 
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Introduction 
  
It is necessary to treat large sparse matrices which 
may be ill conditioned depending on the geometry 
of interpolation network in the case of deflection of 
the vertical’s determination based on torsion bal-
ance measurements Völgyesi (1993, 1995, 2001), 
Tóth, Völgyesi (2002). 

However, MATLAB has also advanced numeric 
methods for sparse matrices, the authors select 
Mathematica, because of its functional program-
ming ability and perfect interactivity make it ideal 
for engineers without professional programming 
knowledge. The interested readers can found a 
comparison of numeric performances of different 
mathematical programs for data analysis in Stein-

haus (2002) as well as a very good introduction to 
Mathematica in Ruskeepaa (2004). 
 
1 Mathematical background 
 
Consider the system of linear algebraic equations 

bAx =  (1) 

where A is a real m x n matrix, m >n and b is a real 
vector of m elements. If m > n, then the equation (1) 
is overdetermined and in general its solution does 
not exist. In similar cases it is advantageous gener-
alize the concept of solution. The vector x of n 
elements, which minimizes the Euclidian norm of 
the error-vector Axb − ,  i.e. 
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is called the least-squares solution of equation (1). 
If the rank of A is smaller than n, then the minimiz-
ing problem (2) has not unique solution. The solu-
tion can be made unique if from among all solutions 
of problem (2) we select that vector ∗x  which 
Euclidian norm is minimal, i.e. min=∗

E
x  holds. 

This unique least-squares solution of equation (1) 
can be computed using the formula 

bAx +∗ =  

where +A  is the generalized- (or Moore-Penrose-) 
inverse of A . In Mathematica +A  is implemented 
using the function Pseudoinverse. 

The problem (2) is equivalent to solving so-called 
normal equations 

bAAxA TT = . 

The solution of a least-squares problem directly 
from the normal equations is rather susceptible to 
roundoff error. 



The most powerful method for computing the 
generalized- (or Moore-Penrose-) inverse and con-
sequently for least-squares solution of equation (1) 
too, is based on the singular value decomposition or 
SVD of matrix A. 

The SVD methods are based on the following 
theorem: any real m x n matrix A, nm ≥  can be 
decomposed as 

TVUΣA =  

where r
TT IVVUU == , rσσ ,...,1=Σ   is di-

agonal matrix, 0...21 >≥≥≥ rσσσ  and r is the 
rank of A . 

The r columns of U are the orthonormal eigen-
vectors of TAA  corresponding to its r largest ei-
genvalues. The r columns of V are the orthonormal 
eigenvectors of AAT  corresponding to its r largest 
eigenvalues. The diagonal elements of Σ  are 
square roots of the r largest eigenvalues of AAT  
and are called singular values of A. 

In Mathematica the SVD is implemented using 
the function SingularValues. 

Using the SVD factorization, the +A  general-
ized- (or Moore-Penrose-) inverse of A can be eas-
ily computed as follows: 

TVUΣA = , 

rσσ /1,...,/1 1=−1Σ  , 

T1UVΣA −+ = . 

The linear least-squares problem becomes more 
strongly ill-conditioned as the spectral condition 
number 

1/)( 1 ≥= nScond σσA  

increases. 
 
2 Data preparation 
 
Computations of deflections of the vertical were 
performed in a test area in Hungary extending over 
some 3000 2km  where torsion balance measure-
ments and astrogeodetic data are available.  

A simple relationship, based on potential theory, 
can be written for the changes of  ikξ∆   and  ikη∆   
between arbitrary points  i  and  k  of the deflection 
of the vertical components  ξ  and  η  as well as for 
curvature values  xxyy WWW −=∆   and  xyW2   

measured by a torsion balance (Völgyesi 1993, 
1995): 

( ) ( )[ ]{

( ) ( )[ ] }kikxyxyixyxy

kiki
ik

kiikiikikkik

kiikkiik

UWUW

UWUW
g

s

α

α

αηαξαηαξ
αηαξ

2cos2

2sin
4

cossincossin
cossin

−+−+

−+−

=−−+
=∆+∆

∆∆∆∆

 

(3) 

where iks  is the distance between points  i  and  k ,  
g  is the average value of gravity between them,  

xxyy UUU −=∆   and  xyU   are curvature values of 

the normal (reference) gravity field, whereas kiα  is 
the azimuth between the two points. 
The computation being fundamentally integration, 
practically possible only by approximation; in de-
riving (3) it had to be assumed that the change of 
gravity gradients between points i and k, measur-
able by torsion balance, is linear (Völgyesi 1993). 
This means Eq. (3) results a large sparse linear 
system. 

In order to illustrate the solution methods sup-
ported by Mathematica, first we show how to create 
a spare matrix object and how to set up the equation 
system from the input data (Popper, 2003). 

The matrix of the equation system can be stored 
in a file, element by element, in the following way:   
 

row number column number value 
 
Command reading data from a file into a list object 
is, 
 
MatrixInput = ReadList[“D:\Data\Matrix.dat”, 
                        {Number,Number,Number}]; 
 
This list object can be converted into a sparse array 
object as, 
 
Converter[{row_,column_,value_}]:= 
                               {row,column}→value 
 
where value is the value of the matrix element as-
signed to the row-th row and column-th column. 
Converting  MatrixInput  list into a sparse ar-
ray, we get 
  
A=SparseArray[Map[Converter[#]&,MatrixInput]] 
SparseArray[<8218>,{2068.1462}] 
 
SparseArray with rules involving patterns uses 
cylindrical algebraic decomposition to find con-
nected array components. Sparse arrays are stored 



internally using compressed sparse row formats, 
generalized for tensors of arbitrary rank.   

The echo of this command shows us, that A is a 
sparse matrix object with 2068 rows and 1462 col-
umns. The number of the nonzero elements are 
8218. These can be computed as, 
 
NumberOf NonzeroElements = 
                        Length[Select[Flatten[A], # ≠ 0 &]] 
NumberOf AllElements = 
                        Apply[Times, Dimensions[A]] 
 
Consequently the sparseness of the matrix is, 
 
Sparseness = 1. - NumberOf NonzeroElements/ 
                        NumberOf AllElements 
which is:  0.997282. 
 

The right hand side vector of the system can be 
read similarly, from a different file, 
 
RightHandSideVector =  
   ReadList[“D:\Data\Rside.dat”,{Number}]//Flatten; 

which is a list of 2068 elements. 
 
3 Condition Number 
 
Looking for a solution in sense of least squares, the 
pseudo matrix is, 
 
PseudoMatrix = Traspose[A].A; 
 
its condition number based on p-norm, p = 2,  is 
 
MatrixConditionNumber[PseudoMatrix, 2] 
 
which is 2107.78. This means that the PseudoMa-
trix matrix is not an ill conditioned matrix, there-
fore pseudoinverse solution can be employed. 
 
4 Displaying the structure  
 
Matrix structure can be graphically displayed via 
the MatrixPlot functionality. The array is shown 
as a grid of black and white cells, by default repre-
senting zero-valued cells as white, and non-zero 
values as black. 
MatrixPlot accept the usual range of options for 
a graphics function. In addition, it takes the Max-
MatrixSize option, specifying a maximum dis-
play size to use for the array. By default, this is set 
to 512. If the matrix dimensions are larger than this 
size, the matrix is downsampled to this size or less 
so that the output graphic size can be controlled. In 
this case, a darkened cell indicates that at least one 
of the covered cells has a non-central value. The 

MaxMatrixSize may be set to Infnity to 
prevent downsampling before display, 
 
<< LinearAlgebra`MatrixManipulation` 
MatrixPlot[A, MatrixSize→Infinity]; 
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Fig. 1 The structure of the sparse matrix 

 
 
5 LinearSolve solution 
 
First we try the LinearSolve function works on 
both numerical and symbolic matrices, as well as 
SparseArray objects.  For sparse arrays, Lin-
earSolve uses UMFPACK multifrontal direct 
solver methods and with Method->"Krylov" 
uses Krylov iterative methods preconditioned by an 
incomplete LU factorization only for numeric ma-
trices.  
 
Timing[(LinearSolve[PseudoMatrix,  
           Transpose[A].RightHandSideVektor]);] 
{0. Second, Null} 
 
or with the Krylov method 
 
Timing[(LinearSolve[PseudoMatrix,  
            Transpose[A].RightHandSideVektor, 
            Method→Krylov]);] 
{0.031 Second, Null} 



The solution vector 
 
x=LinearSolve[PseudoMatrix, 
           Transpose[A].RightHandSideVektor]);] 
ListPlot[x, PlotJoined→True, Frame→True, 
           PlotRange→{-3,+3}, FrameLabel→ 
           {“Number of variables”,”Value of variable”}]; 
 
 

0 200 400 600 800 1000 1200 1400
Number of variables

-2

-1

0

1

2

3

eulaV
fo

elbairav

 
Fig. 2 The structure of the solution 

 
We can check the quality of the pseudo solution 
 
Norm[PseudoMatrix.x-
Transpose[A].RightHandSideVektor] 
1.12688×10-11 
 
The residium of the solution is 
 
Norm[A.x- RightHandSideVektor] 
6.68605 
 
The distribution of the residium among the equa-
tions 
 
ListPlot[Map[Abs[#]&, (RightHandSideVektor-A.x], 
             PlotJoined→True, PlotRange→All, 
             Frame→True, FrameLabel→ 
             {“Number of equations”,”Value of 
residium”}]; 
 
 

0 500 1000 1500 2000
Number of equations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

eulaV
fo

muidiser

 
Fig. 3 Distribution of the residuum 

6 SVD Solution 
 
The SingularValueDecomposition func-
tion gives the singular value decomposition for a 
numerical matrix A. The result is a list of matrices 
{u, σ, v}, where σ is a diagonal matrix, and A can 
be written as  u . σ. Conjugate [Trans-
pose[v]].  
SingularValueDecomposition uses the 

QR decomposition algorithm of Francis with 
Given's rotations. 
 
Timing[SingularValues[A];] 
{42.781 Second, Null} 
 
which is greater with two magnitude than running 
time of LinearSolve. 
 
{u,σ,v} = SingularValues[A]; 
 
The diagonal matrix is  
 
Ξr = DiagonalMatrix[σ]; 
 
The p = 2 norm of a matrix is the largest principal 
axis of the ellipsoid, equal to the largest singular 
value of the matrix. 
 
Norm[A] == Max[σ] 
True 
 
The spectral condition number gives a better esti-
mation for the ill-conditioning, than condition num-
ber based on p = 2 norm 
 
σ[[1]]/Last[σ] 
45.9466 
 
The matrices of u and v are 
 
{Ur, Vr} = Map[Transpose, {u, v}]; 
 
The matrix A can be expressed with these matrices 
and with the diagonal matrix,  consequently 
 
Norm[A- Ur . Ξr .Transpose[Vr]] 
1.98418×10-14 
 
The inverse matrix is 
 
A+ = Vr . Inverse[Ξr] .Transpose[Ur]; 
 
To check round of errors we can express A with the 
inverse, too 
 
Norm[A-A .A+.A] 
1.80475×10-14 

 



The solution vector is 
 
xx = A+. RightHandSideVektor; 
 
The difference between the first and second solution 
method is 
 
Norm[x-xx] 
9.7108×10-11 

 
7 Pseudoinverse solution 
 
The third solution method computes the pseudoin-
verse of A directly, indeed 
 
Norm[PseudoInverse[A] -A+] 
2.11709×10-14 
 
For numerical matrices, PseudoInverse is 
based on SingularValueDecomposition, 
therefore the time of this computation is very close 
to that of the SVD method, 
 
Timing[(PseudoInverse[A] . RightHandSideVektor);] 
{43.563 Second, Null} 
 
which is greater again with two magnitude than 
running time of LinearSolve. The solution vec-
tor is 
 
xxx = PseudoInverse[A] . RightHandSideVektor; 
 
The total residium of the third solution is 
 
Norm[A . xxx – RightHandSideVektor]; 
6.68605 
 
Comparing the first and third solutions, the norm of 
the difference of the solution vectors is 
 
Norm[x – xxx] 
9.71054×10-11 
 
However, the execution time of SVD type methods 
are significantly greater than that of the Linear-
Solve, one can use them in case of ill conditioned 
problem, too. 
 
8 Complexity Study 
 
It is important to know, how the computation time 
increases with the increase of n. According to our 
computation carried out on PC Compaq Evo P4 2.8 
MHz with Mathematica Version 5, the Table 1 
shows the results of two characteristic runs where 
the computation time is in seconds. 

Table 1.  Comparison of methods in case of different prob-
lem sizes  

Matrix A Sparse-
ness 

Linear 
Solve 

Pseudo 
Inverse SVD  

559×400 0.990 0.031 1.188 1.203 
2068×1462 0.997 0.172 43.563 42.781 

 
9 Interpolated deflections of vertical 
 
Interpolated N-S (ξ ) and E-W (η ) components of 
deflections of the vertical that resulted from the 
computation visualized on isoline map in Figure 6 
and 7. Isoline interval is 0.2”. The interpolation 
network has 738 torsion balance stations (marking 
by dots in figures) and 731 of these are points with 
unknown deflection of the vertical. Since there are 
two unknown components of deflection of the verti-
cal at each point there are 1462 unknowns for which 
2068 equations can be written. From these 738 
torsion balance stations there were 11 astrogeodetic 
and astrogravimetric points where ξ , η  values 
were known referring to the GRS80 system.  7 as-
trogeodetic points were used as initial (fixed) points 
of interpolation and 4 points were used for checking 
of computations. 

 Standard deviations 06.0 ′′±=ξm  and 
56.0 ′′±=ηm , computed at checkpoints confirm the 

fact that ξ , η  values of acceptable accuracy can be 
computed from torsion balance measurements and 
Mathematica can be efficiently applied for solving 
this adjustment problem. 
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Fig. 6 Computed  N-S (ξ) component of deflections of the 
vertical 
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Fig. 7 Computed E-W (η) component of deflections of the 
vertical 
 
 
10 Conclusions 
 
LinearSolve based on UMFPACK multifrontal 
direct solver methods and with Method-
>"Krylov" uses Krylov iterative methods pre-
conditioned by an incomplete LU factorization as 
well as the PseudoInverse uses  SVD method, 
give the same result, however the running time of 
the latest is greater with about two magnitudes. In 
case of bad conditioned pseudo matrix, Pseudo-
Inverse function is recommended. Using a stan-
dard PC like we did, we get solution under realistic 
time (approx. 40 seconds) in case of a not bad con-
ditioned system matrix,  for n = 1462 variables. It 

goes without saying that these limits could be dou-
bled with PC employing 64 bits processors. 
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