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Abstract. Almost 100,000 surface gravity gradi-

ent measurements exist in Hungary over an area of 
about 45 000 km2. These measurements are a very 
useful source to study the short wavelength features 
of the local gravity field, especially below 30 km 
wavelength. Our aim is to use these existing gravity 
gradient data in gravity field modeling together with 
gravity anomalies. Therefore we predicted gravity 
anomalies from horizontal gravity gradients using 
the method of least-squares collocation. The cross-
covariance function of gravity gradients and gravity 
anomalies was estimated over the area and a suit-
able covariance model was estimated for the predic-
tion. The full covariance matrix would require 
about 15 GB storage, however, the storage require-
ment can be reduced to about 300 MB by inspecting 
the structure of the cross-covariance function. Using 
sparse linear solvers the computation proved to be 
manageable, and the prediction of gravity anomalies 
for the whole area was performed. The results were 
evaluated at those sites where ∆g values were 
known from measurements in the computational 
area. 
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1 Introduction 
 
In view of the increasing accuracy demands of local 
gravity field determination in the GPS era, it seems 
advantageous to combine all available measure-
ments to the gravity field for the purpose. Since our 
knowledge of the local gravity field is based mainly 
on gravity measurements, the combination of other 
kind of gravity field parameters (e.g. observations 
on the direction of the gravity vector or its horizon-
tal gradient) with gravity measurements is prefer-
able. 

Several authors developed methodologies to com-
bine horizontal gravity gradient and gravity meas-

measurements for local gravity field determination. 
Vassiliou, for example, showed how to process and 
downward continue airborne gradiometer data 
(Vassiliou, 1986). Hein discussed many ways of 
dealing with gravity gradient measurements that are 
available in Germany in the Upper Rhine Valley 
(Hein, 1981). He processed altogether 21616 such 
measurements in view of local gravity field deter-
mination. Another method, the so-called gradient 
kriging with terrestrial gravity gradients was pro-
posed and used by Menz and Knospe (2002) for 
local gravity field determination.  

The problem is particularly interesting to us since 
in Hungary we have almost 100,000 surface gravity 
gradient measurements. Our aim is therefore to 
combine these measurements with gravity data as 
well as other data in view of a new geoid solution 
(Völgyesi et al, 2004). This is the reason why the 
least-squares collocation method was chosen, since 
it is well known that within this method it is rela-
tively easy to process different kind of gravity field 
parameters in a theoretically sound framework. The 
main problem of least-squares collocation is that it 
is computationally demanding as it requires the 
solution of a linear system of which the number of 
unknowns equal to the number of measurements. 
Therefore several authors proposed compactly sup-
ported covariance functions that lead to sparse ma-
trix techniques to reduce the computational burden 
(Sansò and Schuh, 1987). 

First, we briefly review the necessary details of 
the least-squares collocation method. Next within 
the framework of an application example (involving 
an area of about  45 000 km2) the chosen method is 
investigated. Finally the results are discussed and 
several conclusions are drawn. 
 
2 Optimum estimation of gravity 
anomalies 
 
The well-known method of least-squares colloca-
tion (Moritz, 1980) is proven to be suitable in grav-



ity field modeling, since it allows estimating any 
gravity field parameter from measurements of other 
gravity field parameters. The prediction s at any 
point is obtained through the following linear sys-
tem 
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where ℓ is the measurement vector, Css and Cnn 
denote signal and noise covariance matrices, respec-
tively, and Csℓ is the cross-covariance matrix of 
measured and predicted quantities.  

In our case now we would like to predict gravity 
anomalies, i.e. s = ∆g(Qk) at points Qk, (k = 1, …  
Kmax) from measured horizontal gravity gradients 
Vxz Vyz at points Pi, (i = 1, …Nmax)  i.e. ℓ =  [Vxz(Pi) 
Vyz(Pi)]. The necessary isotropic covariances can be 
written as functions of distance d and azimuth α 
(counted anticlockwise from East towards North) 
between any pair of points in the local x = East, 
y = North system as follows: CVxz,Vxz(d, α), 
CVyz,Vyz(d, α), CVxz,Vyz(d, α), C∆g,Vxz(d, α) and 
C∆g,Vyz(d, α).  

The auto- and cross-covariance functions of hori-
zontal gravity gradients CVxz,Vxz(d, α), 
CVyz,Vyz(d, α),  CVxz,Vyz(d, α) are obtained by dif-
ferentiation from  auto-covariance function of grav-
ity anomalies C∆g,∆g(d) = C(∆g, ∆g) 
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Also the cross-covariances C∆g,Vxz(d, α) and 
C∆g,Vyz(d, α) can be written similarly 
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The linear system (1) is composed of six covari-
ance matrix blocks Cxz,xz, Cyz,yz, Cxz,yz, Cyz,yz, 
Cxz,∆g, Cyz,∆g :  
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the blocks each contain covariance functions (2) 
and (3), evaluated at the distance d(i, k) and azimuth 
α(i, k) of measurement and/or prediction points Pi, 
Pk and Qi, Qk, respectively. The solution of Eq (1) 
is an optimum estimation in the least-squares sense 
to gravity anomalies ∆g. 

An important restriction on the choice of the co-
variance function C(∆g,∆g), besides its positive 
definiteness, is the existence of its six derivatives 
defined in Eqs. (2) and (3). A simple analytical 
covariance function model, which behaves well 
under repeated differentiation and is physically 
possible, is the two-parameter Gaussian covariance 
function 

2
)( BdAedC −= . (5) 

The covariance functions (2) and (3) can be ob-
tained immediately as 
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All of the above covariance functions are azimuth-
dependent (non-isotropic). However, it is possible 
to introduce the isotropic functions 
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which are useful to estimate the parameters A and B 
in (5) from measured horizontal gravity gradients 
(Tscherning, 1976). The isotropic covariance func-
tions (7) are illustrated for the parameters A = 6.5 
mGal2 and the parameter B, implicitly defined 
through the correlation length d0 = B/2ln = 6 km 



in Fig. 1. The correlation length d0 is by definition 
the distance where the covariance is half of the 
variance C(0) (i.e. C(d0) = 0.5C(0)). 

 
Fig. 1 Example of isotropic Gaussian cross-covariance func-
tion (7a) of gravity anomalies and horizontal gravity gradi-
ents C(Vd, ∆g) as well as isotropic auto-covariance function 
(7b) of horizontal gravity gradients C(Vd, Vd). The parame-
ters of the covariance function for this example are A = 6.5 
mGal2, d0 = 6 km. 
 

The two parameters necessary to define a Gaus-
sian covariance function can be estimated from the 
empirical isotropic auto-covariance function (7b) of 
horizontal gravity gradients Vxz, Vyz. Since from 
(7b) the variance is 2AB, and the correlation length 
dg is connected to d0 according to the formula dg = 
0.532 d0, one can take these two parameters for the 
estimation of A and B. The actual gravity gradient 
data in Hungary, which were reduced to the normal 
and topographic effects, show an average variance 
125 E2, whereas the correlation length dg is about 
0.7-1 km. Hence the parameters of the Gaussian 
covariance function (5)  are approximately A = 0.8-
3 mGal2 and  d0 = 1-2 km.  
 
3 An application example 
 
Our example application of the collocation equation 
(1) is the estimation of gravity anomalies from the 
surface gravity gradient dataset of Hungary (Völ-
gyesi et al., 2004). The dataset contains 44 818 
gravity gradients and cover an area of about 45 000 
km2 (See statistical parameters in Table 1). The 
covariance matrix thus has slightly more than 2 
billion elements and that would require 15 GB ca-
pacity to store the full matrix in double precision. 

To make our problem numerically tractable, we 
have two choices. First, we could use instead of (5) 

a compactly supported covariance function (Gneit-
ing, 2002). Our second choice is to keep the covari-
ance model (5) with infinite support, but neglect the 
covariances beyond a certain distance dmax. 
Through either of these achievements the covari-
ance matrix will be sparse and thus efficient sparse 
matrix techniques can be used. 
 

 
Fig. 2 Nonzero pattern of the sparse Cℓℓ matrix (4) before 
preordering. The number of nonzero elements is 4 049 268 or 
0.2%. 

 
Fig. 3 Nonzero pattern of the Cℓℓ matrix (4) after approxi-
mate minimum degree (AMD) preordering 

 

Our example computations were based on the sec-
ond choice. All auto- and cross-covariances were 
truncated in the same way at dmax . If the parame-
ters of the Gaussian covariance function are A = 0.5 



mGal2 and  d0 = 1.5 km, the covariance drops below 
5% of its maximum value at dmax = 4 km. Beyond 
this maximum distance all covariances were con-
sidered to be zero. Truncating covariances like this 
will tend to remove from the estimated ∆g field any 
long-range (wavelength dmax ) systematic patterns 
present in the gradiometric data. This way the num-
ber of nonzero elements in the covariance matrix 
has been reduced to 4 049 268. In efficient com-
pressed column format (Davies, 2005) with the 
necessary bookkeeping information the matrix can 
be stored in 46 MB. It was found that about 
300 MB in-core memory was consumed during the 
assembly and solution stages of the problem, which 
is entirely acceptable even on a standard PC. 
Table 1 Statistical parameters of horizontal gravity gradients 
used in the calculations. All units are E (1 Eötvös = 10-9 s-2) 

 min max mean std 

Vxz  -82.80   98.90  -0.45  11.17 

Vyz -173.90   225.40   0.92  11.79 
 
For numerical tests we have developed Fortan 90 

code and interfaced it with the C language LDL 
library (Davies, 2005). The preordering of the ma-
trix for efficient factorization was performed 
through calls to the AMD library (Amestroy et al., 
2004). It can be seen that the original covariance 
matrix (Fig. 2) after the approximate minimum 
degree (AMD) preordering step has a number of 
large nonzero blocks (Fig. 3), and this permutation 
prevents fill-in during the next step, the Cholesky 
factorization of the matrix. 

 

 
Fig. 4 Histogram of gravity anomalies predicted from hori-
zontal gravity gradients at 22409 points with 150 bins. No-
tice the logarithmic scale on the vertical axis. Only less than 
1% of the predictions are above ±25 mGal. 

 

The solution of the sparse linear system (1) pro-
vided us gravity anomalies at 22 409 points. The 
measurements were considered to be uncorrelated 
and with uniform noise variance. After several tests 
runs the noise standard deviation of horizontal grav-
ity gradients was chosen to be ±13.5 E. With this 
value the variance of predicted gravity anomalies 
was in agreement with the variance of the chosen 
covariance model. Moreover, this noise variance 
level is in agreement with the actual errors of ±10-
15 mGal found by Hein (1981) from his collocation 
experiments with horizontal gravity gradients in the 
Upper Rhine Valley in Germany. The histogram of 
predicted gravity anomalies can be seen on Fig. 4. 
Although there are several extremely big values (up 
to 400 mGal!), these are restricted only to a small 
area and more than 99% of the predictions fall 
within the ±25 mGal range. 

It was interesting to us to make comparisons of 
these results with gridded 1’×1.5’ free-air gravity 
anomalies. These anomalies were reduced to the 
effect of the EGM96 geopotential model. To get 
comparison also with the high frequency part of 
gravity anomalies, low-pass filtered anomalies with 
a Gaussian filter of length 15 km were removed. 
We found that the agreement seems better with 
high-pass filtered gravity anomalies (Fig. 5) than 
with the original ones. This was expected, since our 
previous experiences have shown that gravity gra-
dients are more sensitive to local features of the 
gravity field than gravity anomalies. 
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Fig. 5 Comparison of gravity anomalies, high-pass filtered 
gravity anomalies and predictions over a selected 30x30 km2  
nearly flat area. Contour interval is 1 mGal. 



 
Fig. 5 also shows that predicted gravity anomalies 
in this region have less power than the actual grav-
ity field. Truncating covariances would partially 
account for the loss of signal in these areas. On the 
other hand the chosen covariance model may be 
inappropriate for this almost flat area – especially 
the correlation length is too small. On the other 
hand if the area has non-flat topography, the pre-
dicted anomalies have considerably more power 
than reference gravity anomalies (Fig. 6). This 
raises the problem of non-stationarity of the gravity 
gradient signal, the variance of which is very 
strongly correlated with the topography of the area. 
The histogram of average point distances (Fig. 7) 
reflects the difference between flat and non-flat 
areas as well. This is a problem for least-squares 
collocation, since homogeneity and isotropy are 
essential assumptions of the method (Kearsley, 
1977). Other methods like kriging may be interest-
ing in this respect, which do not require stationarity 
assumption on the signal, only stationarity of signal 
increments, i.e. the intrinsical stationarity (Gneiting 
et al., 2000). We have also the possibility to smooth 
the gravity field by removing additional topog-
raphical effects from the gravity gradient signal or 
to make the predictions separately for flat and non-
flat areas. 
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Fig. 6 Comparison of gravity anomalies, high-pass filtered 
gravity anomalies and predictions over a selected 20x20 km2  
non-flat area. Contour interval is 5 mGal for the upper and 
right subfigures and 20 mGal for left subfigure. Notice the 
very high variance of predicted gravity anomalies from the 
horizontal gradients 

 
 

4 Conclusions and recommendations 
 
In the present study it was shown how efficient 
sparse matrix techniques can be used in local grav-
ity field modeling with horizontal gravity gradients. 
The example computation with Hungarian gravity 
gradient data has suggested that non-stationarity of 
gravity gradients makes it difficult to achieve a 
uniformly good prediction in areas of different 
topography. On the other hand gravity anomalies 
predicted from horizontal gradients may show sig-
nificant details at short wavelengths of the gravity 
field which are not necessarily present in gravity 
anomalies. 
 

 
Fig. 7 Histogram of average point distances of gravity gradi-
ent observations. It can be observed that flat and non-flat 
areas have different average point distances 
 

Hence we propose to use gravity gradients to-
gether with topography and gravity measurements 
to yield a better model of the local gravity field than 
from gravity measurements alone. Our results have 
shown, however, that the topography of the area has 
a strong impact on the gravity gradient signal and it 
must be considered carefully. Further tests should 
also be done with other covariance models and 
especially compactly supported covariance func-
tions. Non-stationarity of gravity gradients can be a 
problem in combined modeling of the gravity field 
and it deserves further attention and research.  
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